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1. Introduction and Acknowledgements 

This document is a guide to using MoorDyn, an open-source lumped-mass mooring line model.  

MoorDyn was designed with the mindset of using only the features that are necessary for 

predicting the dynamics of typical mooring systems and probably isn’t suited for modeling 

cables with appreciable bending and torsional stiffnesses.  It can be used as a stand-alone 

mooring simulator if fairlead motions are prescribed from a separate data file, or it can be 

coupled with floating platform models for coupled simulation of a moored floating structure.  

Two versions exist: one generic and one part of FAST v81. 

MoorDyn supports arbitrary line interconnections, clump weights and floats, and different line 

properties.  The model accounts for internal axial stiffness and damping forces, weight and 

buoyancy forces, hydrodynamic forces from Morison's equation, and vertical spring-damper 

forces from contact with the seabed.  The formulation supports inclusion of wave kinematics in 

the hydrodynamic force calculations, but that functionality is currently disabled in the absence 

of a standardized method for receiving wave kinematics data in coupled simulations.  In the 

FAST v8 version, hydrodynamic loads will eventually be handled externally by coupling with 

HydroDyn (in the current version, hydrodynamic forces are calculated assuming still water).  

The model is still being improved, and I hope other users will contribute to it as they adapt it to 

their specific needs. 

MoorDyn began as a course project in Spring 2014 and emerged as a working mooring model in 

Fall 2014.  Marco Masciola (ABS) provided advice at many stages of the development process.    

I then validation MoorDyn against 1:50-scale floating wind turbine test data under the advising 

of Andrew Goupee (UMaine) [1].  I created a separate FORTRAN implementation of MoorDyn 

for inclusion in FAST v8, with input from Bonnie Jonkman and Jason Jonkman (NREL).  I also 

collaborated with Giacomo Vissio (Politecnico di Torino) to couple MoorDyn to 

Matlab/Simulink-based wave energy converter models.  This was supported by an INORE 

International Collaboration Incentive Scholarship2.  Most recently, I helped Senu Sirnivas and Yi-

Hsiang Yu in creating a coupling between MoorDyn and WEC-Sim3.  The MoorDyn User’s Guide 

benefited heavily from the reviewing of Jason Jonkman.  My PhD studies are supported by the 

Natural Sciences and Engineering Research Council of Canada. 

                                                      
1
 https://nwtc.nrel.gov/FAST8 

2
 International Network on Offshore Renewable Energy (www.inore.org) ICIS: “Making models collaborate: 

Coupling numerical and physical ORE models under a common framework” by M. Hall, G. Vissio, B. Passione 
3
 http://wec-sim.github.io/WEC-Sim/ 
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2. Model Structure 

MoorDyn uses a lumped-mass approach to discretize the cable dynamics over the length of the 

mooring line.  A cable is broken up into N evenly-sized line segments connecting N+1 node 

points.  The indexing starts at the anchor (or lower end), with the anchor node given a value of 

zero, and the cable segment between nodes 0 and 1 given an index of 1/2. 

 

The model uses a right-handed inertial reference frame with the z axis being measured positive 

up from the water plane, consistent with NREL’s FAST simulator.  Each node’s position is 

defined by a vector r.  Each segment of the cable has identical properties of unstretched length, 

diameter, density, and Young's modulus.  Different cables can have different sets of properties, 

and cables can be connected together at the ends, enabling mooring systems with 

interconnected lines.  

The ends of each mooring line are defined by Connection objects, which can be considered a 

special type of node.  Using the same terminology as MAP [2], there are three Connection node 

types: 

 Fixed nodes have a certain location and never move.  They can be used as anchor 

points. 

 Vessel nodes can move under the control of an outside program.  They can be used as 

fairlead connections. 

 Connect nodes are not fixed in space but rather are moved according to the forces 

acting on them.  They are what can be used to connect two or more mooring lines 

together.  The forces they experience can include the forces from the attached mooring 

lines (which Fixed and Vessel node types also experience) but also constant external 

forces, buoyancy forces, inertial and gravitational forces, and hydrodynamic drag and 

added mass forces.   

Hydrodynamic loads are calculated directly at the node points rather than at the segment 

centers.  This ensures damping of transverse cable vibrations having a wavelength of twice the 
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cable segment length (which may or may not affect anything).  To approximate the cable 

direction at the node points, the cable tangent at each node is assumed to be the average of 

the tangent directions of the two adjacent cable elements.  Aside from this detail, the 

formulation of the mooring model is fairly standard.  Further technical details and some 

validation results are available in a paper in Ocean Engineering [1].  Some technical details and 

results related to MoorDyn’s capabilities for interconnected lines and mass/buoyancy/drag 

elements in the mooring system can be found in a recent EWTEC paper [3]. 

3. Model Operation 

MoorDyn is meant to be used in conjunction with another program that tells it how the fairlead 

ends of the mooring lines are moving.  This other program can be as simple as a Matlab script 

driving MoorDyn with sinusoidal fairlead motions or as complicated as a FAST simulation of a 

floating platform and wind turbine.  Two versions of MoorDyn exist.  The “C” version, written in 

C++, can be coupled with a variety of codes.  The “F” version, written in FORTRAN, is a module 

contained in FAST v8.  The underlying model is similar in both cases, just the implementation is 

different.  One important difference between the two is that MoorDyn C currently couples 

about the platform reference point; platform motions and mooring reaction forces/moments 

are communicated with respect to a single point and the platform is assumed rigid.  MoorDyn F, 

however, couples about the individual fairleads; platform motions and mooring reaction forces 

are communicated separately for each fairlead, allowing the possibility of flexible/multi-body 

platforms.  Regardless of the version, the basic operation of MoorDyn is the same.   

During initialization, MoorDyn reads the input file describing the mooring system, constructs 

the mooring system data structures, determines the initial fairlead positions based on the initial 

platform position specified by the calling program, and then determines the initial equilibrium 

state of the mooring system.  Determination of the initial state happens in two steps.   

 In the first step, a quasi-static model4 is used to determine the locations of the nodes 

along each mooring line.  The line ends are located according to the fairlead, anchor, 

and connect (if applicable) coordinates provided in the input file. 

 In the second step, dynamic relaxation is used to allow the mooring system to settle to 

equilibrium according to the MoorDyn model.  If there are no connect nodes, this will 

simply fine-tune the results of the quasi-static model to account for the discrete 

                                                      
4
 This model is a slightly modified version of that contained in FAST v7 [4]. 
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approach of MoorDyn.  If there are connect nodes, this will allow them to settle to their 

correct positions, rather than the guessed positions provided in the input file. 

During each coupling time step, MoorDyn accepts the latest platform or fairlead position and 

velocity information provided by the calling program and applies these to the appropriate 

fairlead nodes in its model.  It adjusts its internal time step size (𝑑𝑡𝑀) to ensure that the 

coupling time step size (𝑑𝑡𝐶) is a multiple of 𝑑𝑡𝑀.  It then runs its internal RK2 integrator for 𝑁𝑡 

time steps, where 𝑁𝑡  =  𝑑𝑡𝐶/𝑑𝑡𝑀.  During each model evaluation from the RK2 integrator, a 

number of steps take place: 

 The fairlead kinematics at times 𝑡 and 𝑡 + 𝑑𝑡𝑀/2 are calculated.5 

 The forces on the nodes of every Line are calculated. 

 The accelerations of the internal nodes of every Line are calculated. 

 The forces on each Connection node are calculated by summing the contributions of any 

connected lines as well as any external forces. 

 The accelerations of any connect-type Connection nodes are calculated. 

 The calculated accelerations of the internal and connect nodes are integrated twice to 

find the velocities and positions of the internal and connect nodes at time  𝑡 + 𝑑𝑡𝑀. 

At the end of the coupling time step, MoorDyn returns the resulting net mooring force (in six 

directions on the platform) or individual fairlead forces to the calling program.   One or more 

output files may be written at this point depending on the MoorDyn version and the settings. 

During termination, MoorDyn deallocates variables and closes the output files. 

More details about the function calls available to the calling program to make MoorDyn run are 

described in Sections 5 and 6. 

4. Describing the Mooring System 

The entire description of the mooring system as used by MoorDyn is contained in one input file.  

The structure of this file is based on the MAP input file format by Marco Masciola [2], but 

without MAP’s “depth” and “repeat” functions and with some additions for supporting a 

dynamic mooring model.  There are a few differences depending on whether the C++ or FAST 

                                                      
5
 In the C++ version, the fairlead position at each model evaluation is calculated by integrating the most recent 

velocity supplied by the calling program.  This assumes constant fairlead velocity within each coupling time step.  
In the FAST v8 version, the modularization framework’s ExtrapInterp subroutine is used to provide a more accurate 
estimate of the fairlead kinematics within each coupling time step. 
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v8 version of MoorDyn is used.  In the C++ version, the input file must be called “lines.txt” and 

exist in a subdirectory named “Mooring”.  In the FAST v8 version that filename can be specified 

separately.  Below is an example MoorDyn input file for the OC3-Hywind mooring system.  Lines 

in blue are specific to the FAST v8 version of MoorDyn; they should be omitted when using the 

C++ version. 

--------------------- MoorDyn Input File ------------------------------------ 
MoorDyn input file of the mooring system for OC3-Hywind 
FALSE    Echo      - echo the input file data (flag) 
----------------------- LINE TYPES ------------------------------------------ 
1        NTypes    - number of LineTypes  
Name     Diam      MassDen      EA    BA/-zeta   Can   Cat   Cdn   Cdt 
(-)       (m)      (kg/m)       (N)    (N-s/-)   (-)   (-)   (-)   (-) 
main     0.09      77.7066   384.243E6   -0.8    1.0   0.0   1.6   0.1  
---------------------- CONNECTION PROPERTIES -------------------------------- 
6       NConnects - number of connections including anchors and fairleads 
Node    Type      X        Y        Z       M     V      FX   FY   FZ   CdA  Ca 
(-)     (-)      (m)      (m)      (m)     (kg)  (m^3)  (kN) (kN) (kN) (m^2) (-) 
1      fixed    853.87     0.0    -320.0    0     0      0    0    0    0    0 
2      fixed   -426.94   739.47   -320.0    0     0      0    0    0    0    0 
3      fixed   -426.94  -739.47   -320.0    0     0      0    0    0    0    0 
4      vessel     5.2      0.0     -70.0    0     0      0    0    0    0    0 
5      vessel    -2.6      4.5     -70.0    0     0      0    0    0    0    0 
6      vessel    -2.6     -4.5     -70.0    0     0      0    0    0    0    0 
---------------------- LINE PROPERTIES -------------------------------------- 
3        NLines    - number of line objects  
Line    LineType  UnstrLen  NumSegs   NodeAnch  NodeFair  Flags/Outputs 
(-)       (-)       (m)       (-)       (-)       (-)        (-) 
1         main     902.2      20        1         4           p  
2         main     902.2      20        2         5           -  
3         main     902.2      20        3         6           -  
---------------------- SOLVER OPTIONS --------------------------------------- 
0.001    dtM       - time step to use in mooring integration (s) 
3.0e6    kBot      - bottom stiffness (Pa/m) 
3.0e5    cBot      - bottom damping (Pa-s/m) 
320      WtrDpth   - water depth (m)  
1.0      dtIC      - time interval for analyzing convergence during IC gen (s) 
60.0     TmaxIC    - max time for IC gen (s) 
4.0      CdScaleIC - factor by which to scale drag coefficients during dynamic relaxation (-) 
0.001    threshIC  - threshold for IC convergence (-) 
------------------------ OUTPUTS -------------------------------------------- 
FairTen1 
FairTen2 
FairTen3 
AnchTen3  
L2N4pX 
END 
------------------------- need this line -------------------------------------- 

 

The Line Types section of the file contains one or more definitions of physical line properties 

and four hydrodynamic coefficients.  The columns are, in order, as follows: 

 Name – an identifier word for the line type 

 Diam –  the volume-equivalent diameter of the line – the diameter of a cylinder having 

the same displacement per unit length (m) 

 MassDen –  the mass per unit length of the line (kg/m) 

 EA – the line stiffness, product of elasticity modulus and cross-sectional area (N) 
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 BA/-zeta –  the line internal damping (measured in N-s) or, if a negative value is entered, 

the desired damping ratio (in fraction of critical) for the line type (and MoorDyn will set 

the BA of each line accordingly – see Section 4.1 for more information) 

 Can –  transverse added mass coefficient (with respect to line displacement) 

 Cat – tangential added mass coefficient (with respect to line displacement) 

 Cdn –  transverse drag coefficient (with respect to frontal area, d*l) 

 Cdt –  tangential drag coefficient (with respect to surface area, π*d*l) 

The Connection Properties section defines the connection node points which mooring lines can 

be connected to.    The columns are as follows: 

 Node –  the ID number of the connection (must be sequential starting with 1) 

 Type –  one of “Fixed”, “Vessel”, or “Connect”, as described in Section 2. 

 X, Y, Z –  Coordinates of the connection (relative to inertial reference frame if “fixed” or 

“connect”, relative to platform reference frame if “vessel”).  In the case of “connect” 

nodes, it is simply an initial guess for position before MoorDyn calculates the 

equilibrium initial position.  (m) 

 M – node mass in the case of clump weights (kg) 

 V –  node displacement in the case of floats (m^3) 

 FX, FY, FZ –  any steady external forces applied to the node (N) 

 CdA –  product of drag coefficient and projected area (assumed constant in all 

directions) to calculate a drag force for the node (m^2) 

 Ca –  added mass coefficient used along with V to calculate added mass on node 

 

The Line Properties section defines each uniform-property section of mooring line to be 

simulated, specifying which physical properties it uses, its length, how many segments it is 

discretized into, which nodes it is connected to, and any data to be output in a dedicated 

output file for that line.  This last entry expects a string of one or more characters without 

spaces, each character activating a given output property.  A placeholder character such as “-” 

should be used if no outputs are wanted.  Eight output properties are currently possible: 

 p – node positions 

 v – node velocities 

 U – wave velocities at each node 

 D –hydrodynamic drag force at each node 

 t – tension force at each segment  

 c – internal damping force at each segment 
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 s – strain of each segment 

 d – rate of strain of each segment 

For example, outputting node positions and segment tensions could be achieved by writing “pt” 

for this last column.  These outputs will go to a dedicated output file for each line only.  For 

sending values to the global output file, use the Outputs section instead. 

The Solver Options section can contain any number of optional settings for the overall model, 

including seabed properties, initial condition (IC) generation settings, and the time step size.  

Any of these lines can be omitted, in which case default values will be used.   As such, they are 

all optional settings, although some of them (such as time step size) often need to be set by the 

user for proper operation.  Note that the names for these have been changed in the latest C++ 

version, v1.0.1C.   The list of possible options is: 

 dtM – desired mooring model time step (s) 

 g – gravitational constant (m/s^2)* 

 rhoW – water density (kg/m^3)* 

 WtrDpth – water depth (m)* 

 kBot – bottom stiffness constant (Pa/m)  

 cBot – bottom damping constant (Pa-s/m) 

 dtIC – period for analyzing convergence of dynamic relaxation IC generation (s) 

 TmaxIC – maximum simulation time to allow for IC generation without convergence (s) 

 CdScaleIC – factor by which to scale drag coefficients to accelerate convergence of IC 

generation (-) 

 ThreshIC – convergence threshold for IC generation, acceptable relative difference 

between three successive fairlead tension measurements (-) 

*In the FAST v8 version, the default values for g, rhoW, and WtrDpth are the values provided by 

FAST, so it is recommended to not use custom values for the sake of consistency.   

The bottom contact parameters, kBot and cBot, result in a pressure which is then applied to the 

cross-sectional area (d*l) of each contacting line segment to give a resulting vertical contact 

force for each segment. 

The Outputs section is used in the FAST v8 version to specify general outputs, which are written 

to the main MoorDyn output file and also sent to the driver program for inclusion in the global 

output file.  Each output channel name should have its own line.  There are intuitive keywords 

for fairlead and anchor tensions of a given line: fairten# and anchten#, where # is the line 

number.  There is also a flexible naming system for outputting other quantities. 
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There are currently five supported types of output quantities: 

 pX, pY , pZ  – x/y/z coordinate (m) 

 vX, vY, vZ – velocity (m/s) 

 aX, aY, aZ – acceleration (m/s^2) 

 T or Ten – tension (N) 

 fX, fY, fZ – net force in x/y/z direction (N) 

These can be produced at a connection object, denoted by the prefix Con#, where # is the 

connect number.  Or, they can be produced at a node along a line, denoted by the prefix L#N@, 

where # is the line number and @ is the number of the node along that line.  For example, 

 Con3vY outputs the connection 3 y velocity, 

 L2N4pX outputs the line 2, node 4 x position. 

These capabilities are not yet included in the C++ version of MoorDyn; instead, this version 

always creates a lines.out output file containing the tensions of all fairlead connections.  For 

now, any additional quantities can be obtained by using the optional line-specific output files as 

defined in the Line Properties section. 

4.1. Model Stability and Segment Damping 

Most of the entries in the input file are pretty straightforward and can be set according to 

common sense.  Two of the trickier input parameters are the internal damping (BA) for each 

line type, and the mooring simulation time step (dtM).  Both relate to the discretization of the 

lines. 

The highest axial vibration mode of the lumped-mass cable representation would be when 

adjacent nodes oscillate out of phase with each other, as depicted below. 

 

In this mode, the midpoint of each segment would not move.  The motion of each node can 

then be characterized by mass-spring-damper values of 
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and the damping ratio, 𝜁, is related to the internal damping coefficient, 𝐵𝐴, by 

𝜁 =
𝑐

𝑐𝑐𝑟𝑖𝑡  
=

𝐵

𝑙
√

𝐴

𝐸𝑤
=

𝑁𝐵𝐴

𝐿
√

1

𝐸𝐴𝑤
       ⇒        𝐵𝐴 = 𝜁

𝐿

𝑁
√𝐸𝐴𝑤. 

The line dynamics frequencies of interest should be lower than 𝜔𝑛 in order to be resolved by 

the model.  Accordingly, line dynamics at 𝜔𝑛, which are likely to be dominated by the artificial 

resonance created by the discretization, can be damped out without necessarily impacting the 

line dynamics of interest.  This is advisable because the resonances at 𝜔𝑛 can have a large 

impact on the results.  To damp out the segment vibrations, a damping ratio approaching the 

critical value (𝜁 = 1) is recommended.  Care should be taken to ensure that the line dynamics 

of interest are not affected. 

To simplify things, a desired line segment damping ratio can be specified in the input file.  This 

is done by entering the negative of the desired damping ratio in the BA/-zeta field of the Line 

Types section.  A negative value here signals MoorDyn to interpret it as a desired damping ratio 

and then calculate the damping coefficient (BA) for each mooring line that will give every line 

segment that damping ratio (accounting for possible differences in segment length between 

lines).   

Note that the damping ratio is with respect to the critical damping of each segment along a 

mooring line, not with respect to the line as a whole or the floating platform as a whole.  It is 

just a way of letting MoorDyn calculate the damping coefficient automatically from the 

perspective of damping non-physical segment resonances.    If the model is set up right, this 

damping can have a negligible contribution to the overall damping provided by the moorings on 

the floating platform.  However, if the damping contribution of the mooring lines on the 

floating platform is supposed to be significant, it is best to (1) set the BA value directly to 

ensure that the expected damping is provided and then (2) adjust the number of segments per 

line to whatever provides adequate numerical stability. 
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4.2. Diagnosing Problems 

The factors described in the previous section are the source of most problems encountered by 

new users.  Another source of problems is the initial positions of connection points in more 

complex mooring systems.   

Most problems reveal themselves during initialization, while MoorDyn does a dynamic 

relaxation process, running the model with the initial fairlead positions to allow the mooring 

system to settle to equilibrium.  In the case of instability (NaN results) or other suspected 

problems during this stage, the following is a method to see what is happening. 

First, ensure that the node position outputs are enabled for each line (set with output flag “p”).  

These allow post-process visualization of the mooring line behavior.  Then, set TmaxIC = 0.  This 

will bypass the dynamic relaxation stage and start the simulation only from initial conditions 

calculated by the catenary quasi-static algorithm for each line.  Connection points will start at 

their initial positions as specified in the input file.  This mimics the dynamic relaxation process in 

a way in which data can be output, in order to see what is actually happening.  The only 

difference in the model between this normal operation and dynamic relaxation is that the 

damping forces cannot be exaggerated.  (This is not normally the issue with dynamic relaxation 

problems.  If it is, it can be solved by just setting CdScaleIC = 1.)  Visual analysis of the line 

motions given by the above process usually indicates what sort of problem the model is 

encountering.  Once problems are resolved, the dynamic relaxation initialization can be turned 

back on (TmaxIC > 0) and a damping exaggeration (CdScaleIC > 1) can be applied to provide a 

faster initialization to static equilibrium. 

5. MoorDyn for FAST v8 

In parallel with the C++ version (see Section 6), MoorDyn has been completely rewritten in 

FORTRAN for inclusion in FAST v8, with guidance from Marco Masciola, Bonnie Jonkman, and 

Jason Jonkman.  The original model structure was retained as much as possible.  There are no 

known/intentional differences in the mooring dynamics represented by this version of 

MoorDyn compared to the original C++ version.  There are important differences in the 

interfacing functions, however, since MoorDyn F follows the FAST Modularization Framework 

[5], which specifies certain function forms and data structures to achieve a high degree of 

control over the coupling.   

The important subroutines for coupling with MoorDyn F are: 
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 MD_Init – initializes MoorDyn, including reading the input file, creating the mooring 

system data structures, and calculating the initial conditions. 

 MD_UpdateStates – instructs MoorDyn to run its model from time 𝑡 up to time 𝑡 + 𝑑𝑡𝐶  

in a loose coupling arrangement.  It accepts inputs about the fairlead kinematics and 

returns the fairlead forces at the end of the time integration. 

 MD_CalcOutput – calculates all requested output quantities based on the provided 

states of the mooring system.  Requested general output quantities are written to the 

MoorDyn output file and also returned to FAST for possible inclusion in the global 

output file.  Outputs for line-specific files will be written if enabled.   

 MD_CalcContStateDeriv – contains the core of the MoorDyn model.  Based on the 

current inputs and state variables, it calculates the instantaneous forces on the mooring 

system nodes.  From these, it calculates the node accelerations, which are the 

derivatives of the state variables that can be integrated to move the model forward in 

time.  This subroutine is called by MD_UpdateStates in a loose coupling arrangement.  

Alternatively, it can be called by the driver program in a tight coupling arrangement.  It 

is also called by CalcOutput. 

 MD_End – terminates the MoorDyn portion of the simulation and cleans up memory. 

The arguments and operation of these functions follow the FAST Modularization Framework, 

which can be referenced for more information.  Refer to the source code for details specific to 

MoorDyn.  This FORTRAN version of MoorDyn is included as a module in FAST v8, available at 

nwtc.nrel.gov/FAST8.  The MoorDyn F web page is nwtc.nrel.gov/MoorDyn. 

The FAST modularization framework [5] focuses on a standard centrally-controlled data 

structure that imposes strict requirements on constituent models.  Accordingly, MoorDyn F 

could be easily coupled with other FORTRAN codes following the same modularization 

framework.  More specifically, if a driver or glue code adheres to the framework in how it calls 

mooring models, MoorDyn F will be able to work with it.  For coupling directly with codes not 

following the framework or written in other languages, MoorDyn C is recommended.  
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6. MoorDyn in C++ 

The C++ version of MoorDyn was written from the beginning with the goal of making the 

coupling with other models as simple and generic as possible.  In contrast to the FORTAN 

version, MoorDyn C functions are designed for coupling arrangements in which models keep 

track of their data structures internally and the data passed between models is kept to a 

minimum.  By working toward generic, minimalistic coupling functions, it should be easier to set 

up couplings between different simulation tools, across different programming languages, and 

perhaps without requiring source code changes.  The source code, Windows binaries, and 

examples can be obtained from www.matt-hall.ca/moordyn. 

Coupling MoorDyn C with other programs relies on a few simple core function calls, as shown 

below with their arguments. 

 LinesInit(double X[], double XD[]) – initializes MoorDyn, loading the MoorDyn input file 

and calculating initial conditions based on platform position specified by array X (size 6).  

It will write the t=0 output line to any output files. 

 LinesCalc(double X[], double XD[], double Flines[], double* t, double* dt) – makes 

MoorDyn simulate the mooring system starting at time t and ending at time t+dt.  The 

fairlead kinematics are driven by the platform position and velocity vectors (X and Xd) 

which correspond to time t.  For each internal MoorDyn time step, the platform velocity 

is assumed constant at Xd and the position is adjusted accordingly at each step from the 

initial value X.  The resulting net mooring force about the platform in six directions is 

returned via vector Flines. 

 LinesClose(void) – This function deallocates the variables used by MoorDyn.  It should 

be called last before unloading the MoorDyn DLL. 

In addition to the core functions, additional functions exist for specific applications.  A number 

of these functions exist, and the idea is that additional ones can be created as needed, without 

altering the fundamental structure of the model.  As new functions are created, I hope they will 

be shared for the convenience of all users. Several of these additional functions are currently 

implemented in the released version: 

 double GetFairTen(int i) – This is an optional function to return the tension at the 

fairlead of a given line (line number i), which is ideally called after LinesCalc. 

 GetFASTtens(int* numLines, float FairHTen[], float FairVTen[], float AnchHTen[], float 

AnchVTen[]) – This is an optional function that returns the line tension variables 

expected by FAST v7: horizontal and vertical components of the fairlead and anchor 

tensions. 
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 GetStates (incomplete) and SetStates (incomplete) – these not yet implemented 

functions will allow for getting and setting of the full MoorDyn state vector describing 

the node positions and velocities.  This can allow for saving simulation states for later 

continuation, or running the MoorDyn analysis multiple times for a given coupling time 

step. 

All the above functions are accessible to outside programs so that MoorDyn can be compiled as 

a DLL for use with other already-compiled codes.  Using these functions, it should be easy to 

use MoorDyn with other simulation tools.  The following subsections describe simulation tools 

that have already been used with MoorDyn C. 

6.1. Using MoorDyn with FAST v7 

MoorDyn C was originally designed for coupling with FAST v7 [4].  Doing so requires a 

customized version of FAST containing additional functions for calling an external program for 

the mooring dynamics.  Source code for a suitable FAST version is available by request.  Using 

this FAST version, MoorDyn can be enabled in place of the normal quasi-static mooring model 

by setting LineMod to 5 and deleting any mooring line entries in the FAST platform file.  The 

required FAST modifications for coupling with MoorDyn are very similar to those used for 

coupling with OrcaFlex. 

6.2. Using MoorDyn with Matlab 

MoorDyn C can be easily used with Matlab.  Aside from the correct setup of the input file, 

which is common to all MoorDyn use, coupling between MoorDyn and Matlab can be 

accomplished in about a dozen lines of code.  The following lines show a minimalist example. 

%% Setup 
X = zeros(6,1);                     % platform position 
XD = zeros(6,1);                    % platform velocity 
 
N = 10;                             % number of coupling time steps 
dt = 0.5;                           % coupling time step size (time between MoorDyn calls) 
 
Ts = zeros(N,1);                    % time step array 
FairTens1 = zeros(N+1,1);           % array for storing fairlead 1 tension time series 
 
FLines_temp = zeros(1,6);           % going to make a pointer so LinesCalc can modify FLines 
FLines_p = libpointer('doublePtr',FLines_temp);  % access returned value with FLines_p.value 
 
%% Initialization 
loadlibrary('Lines','MoorDyn');     % load MoorDyn DLL 
calllib('Lines','LinesInit',X,XD)   % initialize MoorDyn  
     
%% Simulation 
XD(1) = 0.1;                        % give platform 0.1 m/s velocity in surge 



14 
 

for i=1:N         
    calllib('Lines', 'LinesCalc', X, XD, FLines_p, Ts(i), dt);  % some MoorDyn time stepping 
    FairTens1(i+1) = calllib('Lines','GetFairTen',1);           % store fairlead 1 tension 
    X = X + XD*dt;                  % update position 
    Ts(i+1) = dt*i;                 % store time 
end 
     
%% Ending 
calllib('Lines','LinesClose');      % close MoorDyn 
unloadlibrary Lines;                % unload library (never forget to do this!) 

 

Always ensure that LinesClose is called (calllib('Lines','LinesClose')) and the library is unloaded 

(unloadlibrary Lines) before trying to load it again (particularly if the Matlab script hits an error 

and doesn’t finish) to avoid Matlab closing or crashing.   

6.3. Using MoorDyn with Simulink 

Using MoorDyn within Simulink adds more components than coupling with Matlab alone (refer 

to the Matlab section also).  An example is included with MoorDyn.  This approach was 

developed in partnership with Giacomo Vissio at Politecnico di Torino. 

The MoorDyn DLL can be loaded and initialized (with the LinesInit function) by placing the 

appropriate Matlab code within the InitFcn6 callback function window of Simulink.  Similarly, 

MoorDyn can be closed (with the LinesClose function) and the DLL unloaded using the CloseFcn 

callback function window.   

During time stepping, we found it best to call MoorDyn’s LinesCalc and GetFairTen functions 

using a separate Matlab function, which can be called in Simulink as a triggered subsystem.   

  

                                                      
6
 The callback functions can be accessed by right clicking in the Simulink workspace, selecting Model Properties, 

then going to the Callbacks tab. 
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The time stepping can be implemented using a triggered subsystem block connected to a pulse 

generator operating at the desired coupling time (𝑑𝑡𝐶) of the simulation (shown on left).  Inside 

this triggered subsystem, a Matlab function block can handle the communication with MoorDyn 

(shown on right). 

                    

Below is an example of this function.  It passes the platform position and velocity as well as the 

current time and time step size to LinesCalc.  It then gets any output quantities of interest, in 

this case fairlead 3 and 4 tensions, and returns them along with the net mooring force vector. 

function [ FLines,Line1_Tens ] = MoorDyn_caller( X,XD,Time,CoupTime ) 
     
    FLines_value = zeros(1,6); 
    FLines = zeros(1,6); 
    Line1_Tens = 0; 
    FLines_p = libpointer('doublePtr',FLines_value); 
    calllib('Lines','LinesCalc',X,XD,FLines_p,Time,CoupTime); 
    Line1_Tens = calllib('Lines','GetFairTen',1); 
    FLines = FLines_p.value; 
end 

 

6.4. Using MoorDyn with WEC-Sim 

WEC-Sim is set up to couple with MoorDyn C. For the specifics of how to use MoorDyn in WEC-

Sim, see the WEC-Sim documentation7, which includes a tutorial on the topic. 

  

                                                      
7
 https://wec-sim.github.io/WEC-Sim/features.html#mooring-moordyn 
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